
Adafruit GFX Graphics Library
Created by Phillip Burgess

https://learn.adafruit.com/adafruit-gfx-graphics-library

Last updated on 2024-06-14 01:23:43 AM EDT

©Adafruit Industries Page 1 of 38



3

5

7

18

19

24

30

Table of Contents

Overview
• The Old Way
• Accessing GFX Functions

Coordinate System and Units

Graphics Primitives
• Drawing pixels (points)
• Drawing lines
• Rectangles
• Circles
• Rounded rectangles
• Triangles
• Characters and text
• Extended Characters, CP437 and a Lurking Bug
• Bitmaps
• Clearing or filling the screen
• Hardware-Specific functions

Rotating the Display

Using Fonts
• Using GFX Fonts in Arduino Sketches
• Adding New Fonts

Loading Images
• Using the Adafruit_ImageReader Library
• Loading and Using Images in RAM

Minimizing Redraw Flicker
• Overwriting Text with the Built-In Font
• Restoring Normal Text Drawing
• Overwriting Text or Graphics Using an Offscreen Canvas 
• A Color Canvas
• Examples

©Adafruit Industries Page 2 of 38



Overview

The Adafruit_GFX library for Arduino provides a common syntax and set of graphics
functions for all of our LCD and OLED displays and LED matrices. This allows Arduino
sketches to easily be adapted between display types with minimal fuss…and any new
features, performance improvements and bug fixes will immediately apply across our
complete offering of color displays.

Adafruit_GFX always works together with an additional library unique to each specific
display type. These can be installed using the Arduino Library Manager. From the
Arduino “Sketch” menu, select “Include Library,” then “Manage Libraries…”

In the Arduino Library Manager window, search for a display’s driver type (e.g.
“SSD1325”) and the appropriate Adafruit library can be found in the results. Required
companion libraries (“dependencies,” like Adafruit_GFX or Adafruit_BusIO) now get
installed automatically. If using an older version of the Arduino IDE, you’ll have to
search for and install those additional libraries manually.
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Some of the libraries that operate alongside Adafruit_GFX include:

RGBmatrixPanel (https://adafru.it/aHj), for our 16x32 (http://adafru.it/420) and 
32x32 (http://adafru.it/607) RGB LED matrix panels.
Adafruit_TFTLCD (https://adafru.it/aHk), for our 2.8" TFT LCD touchscreen
breakout (http://adafru.it/335) and TFT Touch Shield for Arduino (http://adafru.it/
376).
Adafruit_HX8340B (https://adafru.it/aHl), for our 2.2" TFT Display with
microSD (http://adafru.it/797).
Adafruit_ST7735 (https://adafru.it/aHm), for our 1.8" TFT Display with
microSD (http://adafru.it/358).
Adafruit_PCD8544 (https://adafru.it/aHn), for the Nokia 5110/3310 monochrome
LCD (http://adafru.it/338).
Adafruit-Graphic-VFD-Display-Library (https://adafru.it/aHo), for our 128x64
Graphic VFD (http://adafru.it/773).
Adafruit-SSD1331-OLED-Driver-Library-for-Arduino (https://adafru.it/aHp) for the 
0.96" 16-bit Color OLED w/microSD Holder (http://adafru.it/684).
Adafruit_SSD1306 (https://adafru.it/aHq) for the Monochrome 128x64 (http://
adafru.it/326) and 128x32 (http://adafru.it/661) OLEDs.

And many others, except for some very early “retired” products. Remember, just
search for the display driver type in the Arduino Library manager, install, and the rest
is automatic now.

The libraries are written in C++ for Arduino but could easily be ported to any
microcontroller by rewriting the low-level pin access functions.

The Old Way
Much older versions of the Arduino IDE software require installing libraries manually;
the Arduino Library Manager did not yet exist. If using an early version of the Arduino
software, this might be a good time to upgrade. Otherwise, this tutorial explains how
to install and use Arduino libraries (https://adafru.it/aYG). Here are links to download
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the GFX and BusIO libraries directly (use the links above to get the corresponding
display-specific libraries):

Download Adafruit_GFX Library
https://adafru.it/cBB

Download Adafruit_BusIO Library
https://adafru.it/Ldl

Accessing GFX Functions
Any Arduino sketch using Adafruit_GFX needs to #include two libraries. You’ll see
this in most examples, near the top of the code. The first, Adafruit_GFX.h , declares
a common set of graphics functions such as shapes and colors (explained on
subsequent pages). The second completely depends on whatever display you’re
using…it might be  Adafruit_ST7789.h  (for certain color displays), 
Adafruit_SSD1306.h  (for certain monochrome OLEDs) or something else…the
guide or product page for the display will tell you which library to install. The very top
of a sketch then usually resembles something like this:

#include &lt;Adafruit_GFX.h&gt;    // Core graphics library
#include &lt;Adafruit_ST7789.h&gt; // Hardware-specific library for ST7789

Coordinate System and Units
Pixels — picture elements, the blocks comprising a digital image — are addressed by
their horizontal (X) and vertical (Y) coordinates. The coordinate system places the
origin (0,0) at the top left corner, with positive X increasing to the right and positive Y
increasing downward. This is upside-down relative to the standard Cartesian
coordinate system of mathematics, but is established practice in many computer
graphics systems (a throwback to the days of raster-scan CRT graphics, which worked
top-to-bottom). To use a tall “portrait” layout rather than wide “landscape” format, or if
physical constraints dictate the orientation of a display in an enclosure, one of four
rotation settings can also be applied, indicating which corner of the display
represents the top left.

Also unlike the mathematical Cartesian coordinate system, points here have
dimension — they are always one full integer pixel wide and tall.
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Coordinates are always expressed in pixel units; there is no implicit scale to a real-
world measure like millimeters or inches, and the size of a displayed graphic will be a
function of that specific display’s dot pitch or pixel density. If you’re aiming for a real-
world dimension, you’ll need to scale your coordinates to suit. Dot pitch can often be
found in the device datasheet, or by measuring the screen width and dividing the
number of pixels across by this measurement.

The library will safely “clip” any graphics drawn off the edges of the screen. In fact
this is done on purpose sometimes, as with scrolling text displays.

For color-capable displays, colors are represented as unsigned 16-bit values. Some
displays may physically be capable of more or fewer bits than this, but the library
operates with 16-bit values…these are easy for the Arduino to work with while also
providing a consistent data type across all the different displays. The primary color
components — red, green and blue — are all “packed” into a single 16-bit variable,
with the most significant 5 bits conveying red, middle 6 bits conveying green, and
least significant 5 bits conveying blue. That extra bit is assigned to green because our
eyes are most sensitive to green light. Science!
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For the most common primary and secondary colors, we have this handy cheat-sheet
that you can include in your own code. Of course, you can pick any of 65,536
different colors, but this basic list may be easiest when starting out:

// Color definitions
#define BLACK    0x0000
#define BLUE     0x001F
#define RED      0xF800
#define GREEN    0x07E0
#define CYAN     0x07FF
#define MAGENTA  0xF81F
#define YELLOW   0xFFE0 
#define WHITE    0xFFFF

Elsewhere: here’s a detailed explanation of 16-bit “RGB565” colors (https://adafru.it/
19Be) that includes an interactive color picker (not compatible with all browsers).

For monochrome (single-color) displays, colors are always specified as simply 1 (set)
or 0 (clear). The semantics of set/clear are specific to the type of display: with
something like a luminous OLED display, a “set” pixel is lighted, whereas with a
reflective LCD display, a “set” pixel is typically dark. There may be exceptions, but
generally you can count on 0 (clear) representing the default background state for a
freshly-initialized display, whatever that works out to be.

Graphics Primitives
Each device-specific display library will have its own constructors and initialization
functions. These are documented in the individual tutorials for each display type, or
oftentimes are evident in the specific library header file. The remainder of this tutorial
covers the common graphics functions that work the same regardless of the display
type.

The function descriptions below are merely prototypes — there’s an assumption that a
display object is declared and initialized as needed by the device-specific library.
Look at the example code with each library to see it in actual use. For example, where
we show print(1234.56), your actual code would place the object name before this,
e.g. it might read screen.print(1234.56) (if you have declared your display object with
the name screen).
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Drawing pixels (points)

First up is the most basic pixel pusher. You can call this with X, Y coordinates and a
color and it will make a single dot:

void drawPixel(uint16_t x, uint16_t y, uint16_t color);

Drawing lines

You can also draw lines, with a starting and end point and color:

void drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint16_t color);
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For horizontal or vertical lines, there are optimized line-drawing functions that avoid
the angular calculations:

void drawFastVLine(uint16_t x0, uint16_t y0, uint16_t length, uint16_t color);
void drawFastHLine(uint8_t x0, uint8_t y0, uint8_t length, uint16_t color);

Rectangles

Next up, rectangles and squares can be drawn and filled using the following
procedures. Each accepts an X, Y pair for the top-left corner of the rectangle, a width
and height (in pixels), and a color. drawRect() renders just the frame (outline) of the
rectangle — the interior is unaffected — while fillRect() fills the entire area with a given
color:

void drawRect(uint16_t x0, uint16_t y0, uint16_t w, uint16_t h, uint16_t color);
void fillRect(uint16_t x0, uint16_t y0, uint16_t w, uint16_t h, uint16_t color);

©Adafruit Industries Page 9 of 38



To create a solid rectangle with a contrasting outline, use fillRect() first, then
drawRect() over it.

Circles

Likewise, for circles, you can draw and fill. Each function accepts an X, Y pair for the
center point, a radius in pixels, and a color:

void drawCircle(uint16_t x0, uint16_t y0, uint16_t r, uint16_t color);
void fillCircle(uint16_t x0, uint16_t y0, uint16_t r, uint16_t color);

©Adafruit Industries Page 10 of 38



Rounded rectangles

For rectangles with rounded corners, both draw and fill functions are again available.
Each begins with an X, Y, width and height ( just like normal rectangles), then there’s a
corner radius (in pixels) and finally the color value:

void drawRoundRect(uint16_t x0, uint16_t y0, uint16_t w, uint16_t h, uint16_t 
radius, uint16_t color);
void fillRoundRect(uint16_t x0, uint16_t y0, uint16_t w, uint16_t h, uint16_t 
radius, uint16_t color);

©Adafruit Industries Page 11 of 38



Here’s an added bonus trick: because the circle functions are always drawn relative
to a center pixel, the resulting circle diameter will always be an odd number of pixels.
If an even-sized circle is required (which would place the center
point between pixels), this can be achieved using one of the rounded rectangle
functions: pass an identical width and height that are even values, and a corner radius
that’s exactly half this value.

Triangles

With triangles, once again there are the draw and fill functions. Each requires a full
seven parameters: the X, Y coordinates for three corner points defining the triangle,
followed by a color:

void drawTriangle(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint16_t x2, 
uint16_t y2, uint16_t color);
void fillTriangle(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint16_t x2, 
uint16_t y2, uint16_t color);
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Characters and text

There are two basic string drawing procedures for adding text. The first is just for a
single character. You can place this character at any location and with any color. An
optional size parameter can be passed which scales the font by this factor (e.g. size=2
will render the default font at 10x16 pixels per character). It’s a little blocky that way
but having just a single font helps keep the program size down.

void drawChar(uint16_t x, uint16_t y, char c, uint16_t color, uint16_t bg, uint8_t 
size);

Text is very flexible but operates a bit differently. Instead of one procedure, the text
size, color and position are set up in separate functions and then the print() function is
used — this makes it easy and provides all of the same string and number formatting
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capabilities of Arduino’s familiar Serial.print() and println() functions (https://adafru.it/
UdO)! But you precede these with the display object instead of Serial.

void setCursor(int16_t x0, int16_t y0);
void setTextColor(uint16_t color);
void setTextColor(uint16_t color, uint16_t backgroundcolor);
void setTextSize(uint8_t size);
void setTextWrap(boolean w);

Begin with setCursor(x, y), which will place the top left corner of the text wherever you
please. Initially this is set to (0,0) (the top-left corner of the screen). Then set the text
color with setTextColor(color) — by default this is white. Text is normally drawn “clear”
— the open parts of each character show the original background contents, but if you
want the text to block out what’s underneath, a background color can be specified as
an optional second parameter to setTextColor(). Finally, setTextSize(size) will multiply
the scale of the text by a given integer factor. Below you can see scales of 1 (the
default), 2 and 3. It appears blocky at larger sizes because we only ship the library
with a single simple font, to save space.

For some OLED displays, 'display.setTextColor(WHITE, BLACK);' seems to work 
better than specifying 'display.setTextColor(0xFFFFFF, 0x000000);'

Text background color is not supported for custom fonts (explained on “Using 
Fonts” page). For these, you will need to determine the text extents and explicitly 
draw a filled rectangle before drawing the text. This is on purpose and by design.
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After setting everything up, you can use print() or println() — just like you do with 
Serial printing (https://adafru.it/UdO)! For example, to print a string, use print("Hello
world") - that’s the first line of the image above. You can also use print() for numbers
and variables — the second line above is the output of print(1234.56) and the third
line is print(0xDEADBEEF, HEX).

By default, long lines of text are set to automatically “wrap” back to the leftmost
column. To override this behavior (so text will run off the right side of the display —
useful for scrolling marquee effects), use setTextWrap(false). The normal wrapping
behavior is restored with setTextWrap(true).

Extended Characters, CP437 and a Lurking Bug

The standard built-in font includes a number of symbols and accented characters
outside the normal letters and numbers you’d use in print() strings. These can be
accessed with drawChar(), passing an 8-bit value (0–255, though commonly
expressed in hexadecimal, 0x00–0xFF) for the third argument.

The built-in font is based on the original IBM PC character set, known as Code Page
437 (CP437 for short) (https://adafru.it/Uby). Many embedded systems still use this as
it’s compact and well established.

Years ago, when originally transcribing CP437 into the GFX library, one symbol was
accidentally omitted. Nothing fatal, code runs fine, but every subsequent symbol was
then off by one compared to the “real” CP437 character set. By the time this was
discovered, so much code had been written — projects shared online but also in fixed
media like books and magazines — that fixing the bug would break every existing
project that relied on those extended characters!

So the error has been left in place, on purpose, but this creates a different issue if
one is adapting code from elsewhere that relies on the correct CP437 symbol values.

A compromise solution is a function that enables or disables the “real” CP437
sequence. By default this is off, the off-by-one order is used, so that all the old GFX
projects in books work without modification. The correct order can be enabled with:

display.cp437(true);

Unless you need to switch back and forth, this typically only needs to be done one
time, in the setup()  function.
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Here’s a map of the built-in character set, both the standard erroneous version, and
the corrected version used when one calls cp437(true) . Notice this only affects the
last five rows of symbols; everything prior to character 0xB0 is unaffected:

The presence of the extended Code Page 437 symbols is only guaranteed in the
built-in font. Custom fonts (explained elsewhere) rarely include these.

Extended characters typically can’t be directly printed in code; most editors may
support Unicode strings but this does not directly map to CP437. Typically one calls
the write()  function with individual character numbers. The GFX library harkens
back to an earlier time when Unicode support was not widespread.

Consider the German word Schön (beautiful). One might print this like so:

display.cp437(true); // Use correct CP437 character codes
display.print("Scho"); // Print the plain ASCII first part
display.write(0x94); // Print the o-with-umlauts
display.println("n"); // Print the last part

Likewise with accessing the math symbols…

display.cp437(true); // Use correct CP437 character codes
display.print("Temperature: ");
display.print(number);
display.write(0xF8); // Print the degrees symbol
display.println(); // New line

Compiler support for some (not all) 32-bit microcontrollers provides the printf()
function, which can allow these characters to be placed inline via the %c  (character)
formatting identifier:
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display.cp437(true);
display.printf("Temperature: %d%c\n", number, 0xF8);
display.printf("Sch%cn\n", 0x94);

This is nice and compact but isn’t compatible with all microcontrollers, certainly not
early Arduino Uno-class devices, so consider how you might be sharing code and use
it with care.

See the “Using Fonts (https://adafru.it/kAf)” page for additional text features in the
latest GFX library.

Bitmaps

You can draw small monochrome (single color) bitmaps, good for sprites and other
mini-animations or icons:

void drawBitmap(int16_t x, int16_t y, uint8_t *bitmap, int16_t w, int16_t h, 
uint16_t color);

This issues a contiguous block of bits to the display, where each '1' bit sets the
corresponding pixel to 'color,' while each '0' bit is skipped. x, y is the top-left corner
where the bitmap is drawn, w, h are the width and height in pixels.

The bitmap data must be located in program memory using the PROGMEM directive.
This is a somewhat advanced function and beginners are best advised to come back
to this later. For an introduction, see the Arduino tutorial on PROGMEM usage (https://
adafru.it/aMw).

Here's a handy webtool for generating bitmap -> memorymaps (https://adafru.it/l3b)

Clearing or filling the screen

The fillScreen() function will set the entire display to a given color, erasing any existing
content:

void fillScreen(uint16_t color);

Hardware-Specific functions

Some displays may have unique features like screen invert or hardware-based
scrolling. Documentation for those functions can be found in the corresponding
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display-specific guide. Since these are not common features across all GFX-
compatible displays, they are not described here.

Rotating the Display
You can also rotate your drawing. Note that this will not rotate what you already drew,
but it will change the coordinate system for any new drawing. This can be really
handy if you had to turn your board or display sideways or upside down to fit in a
particular enclosure. In most cases this only needs to be done once, inside setup().

We can only rotate 0, 90, 180 or 270 degrees - anything else is not possible in
hardware and is too taxing for an Arduino to calculate in software

void setRotation(uint8_t rotation);

The rotation parameter can be 0, 1, 2 or 3. For displays that are part of an Arduino
shield, rotation value 0 sets the display to a portrait (tall) mode, with the USB jack at
the top right. Rotation value 2 is also a portrait mode, with the USB jack at the bottom
left. Rotation 1 is landscape (wide) mode, with the USB jack at the bottom right, while
rotation 3 is also landscape, but with the USB jack at the top left.
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For other displays, please try all 4 rotations to figure out how they end up rotating as
the alignment will vary depending on each display, in general the rotations move
counter-clockwise

When rotating, the origin point (0,0) changes — the idea is that it should be arranged
at the top-left of the display for the other graphics functions to make consistent sense
(and match all the function descriptions above).

If you need to reference the size of the screen (which will change between portrait
and landscape modes), use width() and height().

uint16_t width(); 
uint16_t height();

Each returns the dimension (in pixels) of the corresponding axis, adjusted for the
display’s current rotation setting.

Using Fonts
More recent versions of the Adafruit GFX library offer the ability to use alternate fonts
besides the one standard fixed-size and -spaced face that’s built in. Several alternate
fonts are included, plus there’s the ability to add new ones.

The included fonts are derived from the 
GNU FreeFont (https://adafru.it/
kAg) project. There are three faces: “Serif”
(reminiscent of Times New Roman), “Sans”
(reminiscent of Helvetica or Arial) and
“Mono” (reminiscent of Courier). Each is
available in a few styles (bold, italic, etc.)
and sizes. The included fonts are in a
bitmap format, not scalable vectors, as it
needs to work within the limitations of a
small microcontroller.

Located inside the “Fonts” folder inside Adafruit_GFX, the included files (as of this
writing) are:

FreeMono12pt7b.h FreeSansBoldOblique12pt7b.h
FreeMono18pt7b.h FreeSansBoldOblique18pt7b.h
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FreeMono24pt7b.h FreeSansBoldOblique24pt7b.h
FreeMono9pt7b.h FreeSansBoldOblique9pt7b.h
FreeMonoBold12pt7b.h FreeSansOblique12pt7b.h
FreeMonoBold18pt7b.h FreeSansOblique18pt7b.h
FreeMonoBold24pt7b.h FreeSansOblique24pt7b.h
FreeMonoBold9pt7b.h FreeSansOblique9pt7b.h
FreeMonoBoldOblique12pt7b.h FreeSerif12pt7b.h
FreeMonoBoldOblique18pt7b.h FreeSerif18pt7b.h
FreeMonoBoldOblique24pt7b.h FreeSerif24pt7b.h
FreeMonoBoldOblique9pt7b.h FreeSerif9pt7b.h
FreeMonoOblique12pt7b.h FreeSerifBold12pt7b.h
FreeMonoOblique18pt7b.h FreeSerifBold18pt7b.h
FreeMonoOblique24pt7b.h FreeSerifBold24pt7b.h
FreeMonoOblique9pt7b.h FreeSerifBold9pt7b.h
FreeSans12pt7b.h FreeSerifBoldItalic12pt7b.h
FreeSans18pt7b.h FreeSerifBoldItalic18pt7b.h
FreeSans24pt7b.h FreeSerifBoldItalic24pt7b.h
FreeSans9pt7b.h FreeSerifBoldItalic9pt7b.h
FreeSansBold12pt7b.h FreeSerifItalic12pt7b.h
FreeSansBold18pt7b.h FreeSerifItalic18pt7b.h
FreeSansBold24pt7b.h FreeSerifItalic24pt7b.h
FreeSansBold9pt7b.h FreeSerifItalic9pt7b.h

Each filename starts with the face name (“FreeMono”, “FreeSerif”, etc.) followed by
the style (“Bold”, “Oblique”, none, etc.), font size in points (currently 9, 12, 18 and 24
point sizes are provided) and “7b” to indicate that these contain 7-bit characters
(ASCII codes “ ” through “~”); 8-bit fonts (supporting symbols and/or international
characters) are not yet provided but may come later.

Using GFX Fonts in Arduino Sketches
After #including the Adafruit_GFX and display-specific libraries, include the font file(s)
you plan to use in your sketch. For example:

#include &lt;Adafruit_GFX.h&gt;    // Core graphics library
#include &lt;Adafruit_TFTLCD.h&gt; // Hardware-specific library
#include &lt;Fonts/FreeMonoBoldOblique12pt7b.h&gt;
#include &lt;Fonts/FreeSerif9pt7b.h&gt;

Each font takes up a bit of program space; larger fonts typically require more room.
This is a finite resource (about 32K max on an Arduino Uno for font data and all of
your sketch code), so choose carefully. Too big and the code will refuse to compile (or
in some edge cases, may compile but then won’t upload to the board). If this
happens, use fewer or smaller fonts, or use the standard built-in font.

Inside these .h files are several data structures, including one main font structure
which will usually have the same name as the font file (minus the .h). To select a font
for subsequent graphics operations, use the setFont() function, passing the address
of this structure, such as:

tft.setFont(&amp;FreeMonoBoldOblique12pt7b);
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Subsequent calls to tft.print() will now use this font. Most other attributes that
previously worked with the built-in font (color, size, etc.) work similarly here.

To return to the standard fixed-size font, call setFont(), passing either NULL or no
arguments:

tft.setFont();

You can see a complete example of custom fonts in action in the MagTag Quotes
Example (https://adafru.it/UB6) source code. It’s really just a few extra lines compared
to a “normal” GFX text program.

Some text attributes behave a little differently with these new fonts. Not wanting to
break compatibility with existing code, the “classic” font continues to behave as
before.

For example, whereas the cursor position when printing with the classic font identified
the top-left corner of the character cell, with new fonts the cursor position indicates
the baseline — the bottom-most row — of subsequent text. Characters may vary in
size and width, and don’t necessarily begin at the exact cursor column (as in below,
this character starts one pixel left of the cursor, but others may be on or to the right of
it).

When switching between built-in and custom fonts, the library will automatically shift
the cursor position up or down 6 pixels as needed to continue along the same
baseline.

One “gotcha” to be aware of with new fonts: there is no “background” color option…
you can set this value but it will be ignored.
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This is on purpose and by design.

The background color feature is sometimes used with the “classic” font to overwrite
old screen contents with new data. This only works because those characters are a
uniform size; that won’t work with proportionally-spaced fonts, where the bounds of
a string can vary, and an indeterminate number of characters may overlap the same
region.

To replace previously-drawn text when using a custom font, either:

Use getTextBounds() to determine the smallest rectangle encompassing a
string, erase the area using fillRect(), then draw new text:

int16_t  x1, y1;
uint16_t w, h;

tft.getTextBounds(string, x, y, &amp;x1, &amp;y1, &amp;w, &amp;h);

getTextBounds expects a string, a starting cursor X&Y position (the current cursor
position will not be altered), and addresses of two signed and two unsigned 16-bit
integers. These last four values will then contain the upper-left corner and the width &
height of the area covered by this text — these can then be passed directly as
arguments to fillRect().

This will unfortunately “blink” the text when erasing and redrawing, but is
unavoidable. The old scheme of drawing background pixels in the same pass only
creates a new set of problems.

or:

Create a GFXcanvas1 object (an offscreen bitmap) for a fixed-size area, draw
custom text in there and copy to the screen using drawBitmap().

// In global declarations:
GFXcanvas1 canvas(128, 32); // 128x32 pixel canvas

// In code later:
canvas.println("I like cake");
tft.drawBitmap(x, y, canvas.getBuffer(), 128, 32, foreground, background); // Copy 
to screen

This is illustrative of syntax, not a complete program — change x , y , foreground
and background  to the desired coordinates and color values suited to the display.

• 

• 
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Some displays also require an explicit display() or show() call to refresh the screen
contents.

This will be flicker-free but requires more RAM (about 512 bytes for the 128x32 pixel
canvas shown above), so it’s not always practical on AVR boards with only 2K.
Arduino Mega or any 32-bit board should manage fine.

See the “Minimizing Redraw Flicker” page for more info on using canvases.

Adding New Fonts
If you want to create new font sizes not included with the library, or adapt entirely
new fonts, we have a command-line tool (in the “fontconvert” folder) for this. It should
work on many Linux- or UNIX-like systems (Raspberry Pi, Mac OS X, maybe Cygwin for
Windows, among others).

Building this tool requires the gcc compiler and FreeType (https://adafru.it/kAh) library.
Most Linux distributions include both by default. For others, you may need to install
developer tools and download and build FreeType from the source (https://adafru.it/
kAi). Then edit the Makefile to match your setup before invoking “make”.

fontconvert expects at least two arguments: a font filename (such as a scalable
TrueType vector font) and a size, in points (72 points = 1 inch; the code presumes a
screen resolution similar to the Adafruit 2.8" TFT displays). The output should be
redirected to a .h file…you can call this whatever you like but I try to be somewhat
descriptive:

./fontconvert myfont.ttf 12 &gt; myfont12pt7b.h

The GNU FreeFont files are not included in the library repository but are
easily downloaded (https://adafru.it/kAj). Or you can convert most any font you like.

The name assigned to the font structure within this file is based on the input
filename and font size, not the output. This is why I recommend using descriptive
filenames incorporating the font base name, size, and "7b". Then the .h filename and
font structure name can match.

The resulting .h file can be copied to the Adafruit_GFX/Fonts folder, or you can import
the file as a new tab in your Arduino sketch using the Sketch→Add File… command.

If in the Fonts folder, use this syntax when #including the file:
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#include &lt;Fonts/myfont12pt7b.h&gt;

If a tab within your sketch, use this syntax:

#include "myfont12pt7b.h"

Loading Images

Loading .BMP images from an SD card (or the flash memory chip on Adafruit
“Express” boards) is an option for most of our color displays…though it’s not built into
Adafruit_GFX and must be separately installed.

The Adafruit_ImageReader library handles this task. It can be installed through the
Arduino Library Manager (Sketch→Include Library→Manage Libraries…). Enter
“imageread” in the search field and the library is easy to spot:
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While you’re there, also look for the Adafruit_SPIFlash library and install it similarly.

There’s one more library required, but it can’t be installed through the Library
Manager. The Adafruit fork of the SdFat library needs to be downloaded as a .ZIP file,
uncompressed and installed the old-school Arduino library way (https://adafru.it/m3e).

Download SdFat (Adafruit fork)
Arduino library

https://adafru.it/Fml

Using the Adafruit_ImageReader Library
The syntax for using this library (and the separate installation above) are admittedly a
bit peculiar…it’s a side-effect of the way Arduino handles libraries. We purposefully
did not roll this into Adafruit_GFX because any mere mention of an SD card library will
incur all of that library’s considerable memory requirements…even if one’s sketch
doesn’t use an SD card at all! A majority of graphics projects are self-contained and
don’t reference files from a card…not everybody needs this functionality.

There are several example sketches in the Adafruit_ImageReader/examples folder.
It’s recommended that you dissect these for ideas how to use the library in your own
projects.

They all start with several #includes…

#include &lt;Adafruit_GFX.h&gt;         // Core graphics library
#include &lt;Adafruit_ILI9341.h&gt;     // Hardware-specific library
#include &lt;SdFat.h&gt;                // SD card &amp; FAT filesystem library
#include &lt;Adafruit_SPIFlash.h&gt;    // SPI / QSPI flash library
#include &lt;Adafruit_ImageReader.h&gt; // Image-reading functions

One of these lines may vary from one example to the next, depending which display
hardware it’s written to support. Above we see it being used with the Adafruit_ILI9341
display library required of certain shields, FeatherWings or breakout boards. Others
examples reference Adafruit_HX8357, Adafruit_ST7735, or other color TFT or OLED
display libraries…use the right one for the hardware you have.

Most of the examples can work from either an SD card, or the small flash storage
drive that’s on certain Adafruit “Express” boards. The code to initialize one or the
other is a little different, and the examples check whether USE_SD_CARD is #defined
to select one method vs. the other. If you know for a fact that your own project only
needs to run on one type or the other, you really only need the corresponding
initialization.
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For SD card use, these two globals are declared:

  SdFat                SD;         // SD card filesystem
  Adafruit_ImageReader reader(SD); // Image-reader object, pass in SD filesys

For a flash filesystem, there are some special declarations made that help us locate
the flash device on different Express boards, then declare three globals:

  // SPI or QSPI flash filesystem (i.e. CIRCUITPY drive)
  #if defined(__SAMD51__) || defined(NRF52840_XXAA)
    Adafruit_FlashTransport_QSPI flashTransport(PIN_QSPI_SCK, PIN_QSPI_CS,
      PIN_QSPI_IO0, PIN_QSPI_IO1, PIN_QSPI_IO2, PIN_QSPI_IO3);
  #else
    #if (SPI_INTERFACES_COUNT == 1)
      Adafruit_FlashTransport_SPI flashTransport(SS, &amp;SPI);
    #else
      Adafruit_FlashTransport_SPI flashTransport(SS1, &amp;SPI1);
    #endif
  #endif
  Adafruit_SPIFlash    flash(&amp;flashTransport);
  FatFileSystem        filesys;
  Adafruit_ImageReader reader(filesys); // Image-reader, pass in flash filesys

The “reader” object will be used to access the image-loading functions later.

Then…we declare a display object (called “tft” in most of the examples) the usual
way…for example, with the 2.8 inch TFT touch shield for Arduino, it’s:

#define SD_CS   4 // SD card select pin
#define TFT_CS 10 // TFT select pin
#define TFT_DC  9 // TFT display/command pin

Adafruit_ILI9341 tft = Adafruit_ILI9341(TFT_CS, TFT_DC);

That all takes place in the global variable section, even before the setup() function.

Now we need to do some work in setup(), and again it’s different for SD cards vs. flash
filesystems…

For SD card use, it might look like this:

  if(!SD.begin(SD_CS, SD_SCK_MHZ(25))) { // ESP32 requires 25 MHz limit
    Serial.println(F("SD begin() failed"));
    for(;;); // Fatal error, do not continue
  }

This example is providing some very basic error handling…checking the return status
of SD.begin() and printing a message to the Serial Monitor if there’s a problem.

Using a flash filesystem instead requires two steps:
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  if(!flash.begin()) {
    Serial.println(F("flash begin() failed"));
    for(;;);
  }
  if(!filesys.begin(&amp;flash)) {
    Serial.println(F("filesys begin() failed"));
    for(;;);
  }

All other code is now the same regardless whether using an SD card or flash. That
either/or setup required some extra steps but it’s all smooth sailing now…

After the SD (or flash) and TFT’s begin()  functions have been called, you can then
call reader.drawBMP()  to load a BMP image from the card to the screen:

ImageReturnCode stat;
stat = reader.drawBMP("/purple.bmp", tft, 0, 0);

This accepts four arguments:

A filename in “8.3” format (you shouldn’t need to provide an absolute path (the
leading “/”), but there are some issues with the SD library on some cutting-edge
boards like the ESP32, so go ahead and include this for good measure).
The display object where the image will be drawn (e.g. “tft”). This is the weird
syntax previously mentioned…rather than tft.drawBMP(), it’s reader.drawBMP(tft),
because reasons.
An X and Y coordinate where the top-left corner of the image is positioned (this
doesn’t need to be within screen bounds…the library will clip the image as it’s
loaded). 0, 0 will draw the image at the top-left corner…so if the image
dimensions match the screen dimensions, it will fill the entire screen.

This function returns a value of type ImageReturnCode , which you can either ignore
or use it to provide some diagnostic functionality. Possible values are:

IMAGE_SUCCESS  — Image loaded successfully (or was clipped fully off screen,
still considered “successful” in that there was no error).
IMAGE_ERR_FILE_NOT_FOUND  — Could not open the requested file (check
spelling, confirm file actually exists on the card, make sure it conforms to “8.3”
file naming convention (e.g. “filename.bmp”).
IMAGE_ERR_FORMAT  — Not a supported image format. Currently only 
uncompressed 24-bit color BMPs are supported (more will likely be added over
time).
IMAGE_ERR_MALLOC  — Could not allocate memory for operation (drawBMP()
won’t generate this error, but other ImageReader functions might).

• 

• 

• 

• 

• 

• 

• 

©Adafruit Industries Page 27 of 38



Rather than dealing with these values yourself, you can optionally call a function to
display a basic diagnostic message to the Serial console:

reader.printStatus(stat);

If you need to know the size of a BMP image without actually loading it, there’s the 
bmpDimensions()  function:

int32_t width, height;
stat = reader.bmpDimensions("/parrot.bmp", &amp;width, &amp;height);

This accepts three arguments:

A filename, same rules as the drawBMP()  function.
Pointers to two 32-bit integers. On successful completion, their contents will be
set to the image width and height in pixels. On any error these values should be
ignored (they’re left uninitialized).

This function returns an  ImageReturnCode  as explained with the drawBMP()
function above.

Loading and Using Images in RAM
Depending on image size and other factors, loading an image from SD card to screen
may take several seconds. Small images…those that can fit entirely in RAM…can be
loaded once and used repeatedly. This can be handy for frequently-used icons or
sprites, as it’s usually much easier than converting and embedding an image as an
array directly in one’s code…a horrible process.

This introduces another ImageReader function plus a new object type, 
Adafruit_Image :

Adafruit_Image img;
stat = reader.loadBMP("/wales.bmp", img);

loadBMP()  accepts two arguments:

A filename, same rules as the previous functions.
An Adafruit_Image  object. This is a slightly more flexible type than the
bitmaps used by a few drawing functions in the GFX library.

• 
• 

• 
• 
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This returns an  ImageReturnCode  as previously described. If an image is too large to
fit in available RAM, a value of  IMAGE_ERR_MALLOC  will be returned. Color images
require two bytes per pixel…for example, a 100x25 pixel image would need 100*25*2
= 5,000 bytes RAM.

On success, the img  object will contain the image in RAM.

The loadBMP()  function is useful only on microcontrollers with considerable RAM,
like the Adafruit “M0” and “M4” boards, or ESP32. Small devices like the Arduino Uno
just can’t cut it. It might be marginally useful on the Arduino Mega with very small
images.

After loading, use the img.draw()  function to display an image on the screen:

img.draw(tft, x, y);

This accepts three arguments:

A display object (e.g. “tft” in most of the examples), similar to how drawBMP()
worked.
An X and Y coordinate for the upper-left corner of the image on the screen,
again similar to drawBMP() .

We use img.draw(tft,…)  rather than tft.drawRGBBitmap(…)  (or other bitmap-
drawing functions in the Adafruit_GFX library) because in the future we plan to add
more flexibility with regard to image file formats and types. The Adafruit_Image
object “understands” a bit about the image that’s been loaded and will call the
appropriate bitmap-rendering function automatically, you won’t have to handle each
separate case on your own.

If the image failed to load for any reason, img.draw()  can still be called, it just won’t
do anything. But at least the sketch won’t crash.

There is no BMP-to-flash function. This is on purpose and by design. We do
something similar to that in the M4_Eyes (https://adafru.it/UB7) project and you’re
welcome to look through that code for insights, but generally speaking this is fraught
with peril and not something we recommend. SD to screen or to RAM should cover
most cases.

• 

• 
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Minimizing Redraw Flicker
A common need in microcontroller projects is to redraw all or part of a screen, such
as when showing live readings from a sensor. The least-code approach to this usually
is to erase all or part of the screen (using fillScreen()  or fillRect() ) and re-
draw everything in the affected area. This does the job, but the off-and-on
appearance can be distracting, especially if these redraws occur frequently and it
becomes a steady flicker.

This isn’t true of all GFX-compatible devices. Some displays (most LED matrices and
some monochrome OLED screens) don’t refresh until there’s specifically a show() , d
isplay()  or update()  call in one’s code (depending on the library), so this flicker is
minimized or doesn’t occur. Mostly it’s an issue with color LCD or OLED screens,
where graphics are rendered with every function call.

There are a couple of approaches one can use to minimize this effect. The first (and
usually easiest) is suited to the standard fixed-size GFX font and is best for Arduino
Uno and other memory-constrained microcontrollers. The other applies to custom
fonts and any other graphics primitives, and is best for modern 32-bit
microcontrollers with ample RAM (thought may still work on Uno for very small
updates).

Overwriting Text with the Built-In Font

This first method relies on the fact that the standard built-in font has uniformly-sized
characters; it’s sometimes referred to as the “5 by 7” pixel font (though really 6x8
pixels to allow at least 1 pixel between adjacent characters, and for descenders on
some lowercase characters like “g” or “p”). Then…

The setTextColor()  function, which normally accepts a single argument (a color to
use for subsequent text printing), can optionally accept a second argument—a
“background color” that applies to every pixel in the 6x8 box that’s not part of the
character shape. Normally each character box is transparent and only “foreground”
pixels are set.

display.setTextColor(foreground, background);

Here’s how that might be used in an Arduino sketch. Understand that this is not a
complete program because every type of display has a distinct setup
procedure. Complete examples for PyPortal are given at the bottom of this page,
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providing a starting point that can be adapted to other screen types. Look at the
“graphicstest” example that accompanies most GFX-compatible libraries for insights.

// This is an incomplete Arduino example to minimally show
// the text overwrite approach. A real program would #include
// a display library header and declare a global 'display'.

void setup() {
// Likewise, display initialization would take place here.

// On color LCDs, this is white text on black background:
display.setTextColor(0xFFFF, 0x0000);
// On monochrome OLEDs, these might be 1 and 0 instead.

}

void loop() {
display.setCursor(0, 0); // Position at top-left corner
display.print("Hello"); // Print a message
delay(1000); // Pause 1 second
display.setCursor(0, 0); // Back to top-left corner
display.print("World"); // Print another message, same length
delay(1000); // Pause 1 second

}

The sketch alternately prints “Hello” and “World” at the top-left corner of the screen;
each pass erases the text that came before, there’s no need to explicitly erase that
area. (Try removing the second argument to setTextColor()  and watch what
happens.)

This works because both messages are the same 5-character length (30x7 pixels at
the default text size, 60x14 at size 2 and so forth). If the messages are different
lengths, it’s necessary to pad a string with extra spaces to overwrite the old text
underneath.

One way to do this is by declaring a fixed-size character buffer and then using C’s 
formatted output via the sprintf()  function. Let’s suppose a project will need up to
10 characters for each message. We begin by declaring a char array with 11
elements, because C strings require a trailing NUL (0) byte at the end:

char buf[11]; // 10 characters + NUL

Then we format a string into that buffer using sprintf()  (string-print-formatted),
some examples of which could include:

sprintf(buf, "%-10s", "Hello"); // Left-justified message
sprintf(buf, "%10s", "World"); // Right-justified message
sprintf(buf, "%10d", 42); // Right-justified integer

And the buffer can then be passed to the normal print()  or println()  functions:
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display.setCursor(x, y);
display.print(buf);

sprintf()  has near infinite variety so we can’t give every possible example here.
Since it’s a standard part of the C language, just searching around for “C formatted
output” or just “sprintf” will turn up plenty of references. It’s quite potent! Note
however that the Arduino implementation is somewhat scaled back to fit on a
microcontroller; formatting floating-point values this way is not supported, for
example.

The counterpoint to using sprintf()  is one of those great power, great
responsibility lessons. String and memory handling in C (and thus C++, and thus the
whole Arduino ecosystem) is simplistic, and there’s nothing in place…other than your
own self-discipline, you hope…to prevent exceeding the length of that char  array,
writing data willy-nilly into other RAM and leading to unexpected behavior or program
crashes.

One approach to overwriting floating-point values is to use the normal Arduino 
print()  function to the display, which accepts an optional argument specifying the
number of digits after the decimal point, so the output is always the same size:

float value = 3.14159;
display.print(value, 5); // Will ALWAYS be extended to X.XXXXX, even if 0's

Another approach, if numbers or messages to print may vary in length, is just to
follow up with enough spaces to cover up any change in the number of characters.
But this relies on there not being any other stuff toward the right edge of the screen
and isn’t suited to every situation:

int value = 42;
display.setTextWrap(false); // Allow spaces to go off right edge
display.setCursor(0, 0);
display.print(value);
display.print("      "); // Cover anything previously in this space

Restoring Normal Text Drawing

To turn this off and draw normal “transparent” text, call setTextColor()  with just
the foreground color argument:

display.setTextColor(foreground);
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Overwriting Text or Graphics Using an Offscreen Canvas

The above method has some advantages in that it requires minimal modification to
existing programs—something that prints once is easily adapted to print repeatedly—
and that it fits well within modest microcontrollers like the Arduino Uno.

Where it doesn’t work is with custom fonts, or with non-text elements like graphics or
indicators. In fact, the optional second argument to setTextColor()  (the
background color) is simply ignored when using custom fonts. This is on purpose and
by design! With proportionally-spaced fonts, strings will occupy different-sized
regions, even if they contain the same number of characters…the overwrite technique
simply can’t be relied on.

The method explained here uses some extra RAM. Most 32-bit microcontrollers have
ample capacity for this, but the classic Uno may struggle in all but the simplest cases.

The GFX library can provide an offscreen canvas. It works just like drawing to a
screen…except there’s no screen, just a grid of pixels in memory. The canvas can then
be passed to another function (explained later), which does draw it to the screen.

Flicker-free redraw then works like this:

Create a canvas object; usually done just once, at program startup
Then, each time a screen update is needed: 

Clear the canvas
Print text or draw shapes to the canvas
Copy the canvas to the screen

A canvas doesn’t need to match the size of the screen; if you’re just updating a
rectangle, it only needs to be that size. That’s important because every pixel takes a
little RAM. Also a program can have more than one canvas if needed.

There are different canvas depths for 1, 8 and 16-bit color. We’ll focus on just 1 and 16
here; the 8-bit case is seldom seen.

The 1-bit canvas type— GFXcanvas1 —provides two colors; foreground and
background, or foreground and transparent, much like working with the built-in font
and setTextColor() . For most single-color things like text, this is what you’d use.

• 
• 

◦ 
◦ 
◦ 

©Adafruit Industries Page 33 of 38



A canvas might be declared in the global part of one’s sketch, before the setup()
function, like so:

GFXcanvas1 canvas(width, height);

width and height should be the canvas dimensions, in pixels. Each pixel requires 1 bit
of RAM…so for instance, 120x30 pixels = 3,600 bits = 450 bytes…plus a couple dozen
bytes overhead for the GFXcanvas1  structure itself. A single small canvas like that
can usually work in the modest 1.5K of an Arduino Uno, but complex programs, larger
or multiple canvases, or color (explained later) require more capable devices.

Canvases use all the same drawing functions as normally provided by the GFX library.
So, where one might use  display.fillScreen(0)  before, one can use 
canvas.fillScreen(0)  instead (though the canvas is not a screen, it’s helpful to
keep the names uniform across everything). This applies to all the pixel, shape and
text-drawing functions. With a GFXcanvas1  object, drawing colors must be 1
(foreground or “set” pixel) or 0 (background or “clear” pixel).

So the idea here is to just wipe and redraw the entire contents of the canvas each
time a redraw is needed. Although GFX provides the getTextBounds()  function, it
just isn’t necessary to go to such fuss to be “optimal”—canvases are already super
quick to work with.

As before, this example is incomplete and just highlights the important ideas here. A
full working example for PyPortal (and adaptable to other screens) is given at the
bottom of the page.

// This is an incomplete Arduino example to minimally show
// the canvas drawing approach. A real program would #include
// a display library header and declare a global 'display',
// also including and enabling a custom font.

// Then, in ADDITION to all that, there's...
GFXcanvas1 canvas(120, 30); // 1-bit, 120x30 pixels

void setup() {
// Display init and font select would take place here.
// See later examples for that.

// Text might exceed width of canvas, so disable wrapping:
canvas.setTextWrap(false);

}

void loop() {
canvas.fillScreen(0); // Clear canvas (not display)
canvas.setCursor(0, 24); // Pos. is BASE LINE when using fonts!
canvas.print(millis()); // Print elapsed time in milliseconds
// Copy canvas to screen at upper-left corner. As written here,
// assumes a color LCD, hence the color values of 0xFFFF (white)
// for foreground, 0x0000 (black) for background. Mono OLED can
// use 1 and 0. BOTH colors must be specified to overwrite the
// prior screen contents there.
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display.drawBitmap(0, 0, canvas.getBuffer(),
canvas.width(), canvas.height(), 0xFFFF, 0x0000);

}

Notice how the fill, cursor and print operations are all performed on the canvas
object, but the bitmap-drawing operation is done on the display  object. It’s easy to
confuse these; if something like a custom font doesn’t seem to be working, confirm
you’ve set that for the canvas, not the display!

Because GFX “clips” graphics drawn to the canvas, this can be used for interesting
effects like scrolling text within a rectangle in one section of a screen.

If you have multiple numbers or areas of the screen to update, and these are all the
same dimensions, a single canvas can be re-used among them; it’s not always
necessary to allocate multiple distinct canvases, unless the size varies.

drawBitmap()  works with all display types; the same function can be used with a 
GFXcanvas1  regardless whether the screen is a 16-bit color TFT display or a black-
and-white OLED.

A Color Canvas

The 16-bit canvas type— GFXcanvas16 —works much like a 16-bit LCD screen. Instead
of foreground and background (or transparent) colors, one has the whole 64K gamut
of colors to work with. If you’re only planning to draw text, you probably don’t need
this, a GFXcanvas1  will suffice, and you can specify any single color when copying to
the display.

Like the 1-bit variety, this can be declared in the global part of one’s sketch, before
the setup()  function:

GFXcanvas16 canvas(width, height);

Unlike the 1-bit variety, GFXcanvas16  uses inordinate RAM; 2 bytes per pixel. That
120x30 pixel example from earlier now requires 7,200 bytes…way beyond the reach
of the Arduino Uno’s 1.5K RAM, but practical for more modern microcontrollers to
handle.

There are some differences when copying a color canvas to the screen. First, one
now uses the drawRGBBitmap()  function, which accepts mostly the same arguments
but omits the foreground and background colors (since the canvas itself is now full
color):
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display.drawRGBBitmap(0, 0, canvas.getBuffer(), canvas.width(), canvas.height());

Second, drawRGBBitmap() only works on color screens, unlike drawBitmap()
which works across all display types. Color reduction is a subjective process and
would incur a lot of extra code, so this capability was omitted. Best to pair
monochrome screens with GFXcanvas1  instead.

Examples

Here’s the simple “text overwrite” example as written for PyPortal. This could be
adapted to other screens by changing the display declaration and initialization; see
the “graphicstest” example that accompanies most display libraries.

// Simple (text overwrite) flicker-free example for PyPortal

#include <Adafruit_GFX.h>
#include <Adafruit_ILI9341.h>

#define TFT_D0        34 // Data bit 0 pin (MUST be on PORT byte boundary)
#define TFT_WR        26 // Write-strobe pin (CCL-inverted timer output)
#define TFT_DC        10 // Data/command pin
#define TFT_CS        11 // Chip-select pin
#define TFT_RST       24 // Reset pin
#define TFT_RD         9 // Read-strobe pin
#define TFT_BACKLIGHT 25

// ILI9341 screen with 8-bit parallel interface:
Adafruit_ILI9341 display(tft8bitbus, TFT_D0, TFT_WR, TFT_DC, TFT_CS, TFT_RST, 
TFT_RD);

void setup() {
  pinMode(TFT_BACKLIGHT, OUTPUT);       // PyPortal requires
  digitalWrite(TFT_BACKLIGHT, HIGH);    // turning on backlight

  display.begin();                      // Initialize and
  display.fillScreen(0x0000);           // clear display

  display.setTextColor(0xFFFF, 0x0000); // White text, black background
  display.setTextSize(2);               // 2X size text
}

void loop(void) {
  display.setCursor(0, 0); // Position at top-left corner
  display.print("Hello");  // Print a message
  delay(1000);             // Pause 1 second
  display.setCursor(0, 0); // Back to top-left corner
  display.print("World");  // Print another message, same length
  delay(1000);             // Pause 1 second
}

And here’s a “1-bit canvas” example as written for PyPortal, using a large and friendly
font. Again, this could be adapted to other screens by changing the display
declaration and initialization; see the “graphicstest” example that accompanies most
display libraries.
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// Fancy (offscreen canvas) flicker-free example for PyPortal

#include <Adafruit_GFX.h>
#include <Adafruit_ILI9341.h>
#include <Fonts/FreeSerifBold18pt7b.h>

#define TFT_D0        34 // Data bit 0 pin (MUST be on PORT byte boundary)
#define TFT_WR        26 // Write-strobe pin (CCL-inverted timer output)
#define TFT_DC        10 // Data/command pin
#define TFT_CS        11 // Chip-select pin
#define TFT_RST       24 // Reset pin
#define TFT_RD         9 // Read-strobe pin
#define TFT_BACKLIGHT 25

// ILI9341 screen with 8-bit parallel interface:
Adafruit_ILI9341 display(tft8bitbus, TFT_D0, TFT_WR, TFT_DC, TFT_CS, TFT_RST, 
TFT_RD);

GFXcanvas1 canvas(120, 30); // 1-bit, 120x30 pixels

void setup() {
  pinMode(TFT_BACKLIGHT, OUTPUT);       // PyPortal requires
  digitalWrite(TFT_BACKLIGHT, HIGH);    // turning on backlight

  display.begin();                      // Initialize and
  display.fillScreen(0x0000);           // clear display

  canvas.setFont(&FreeSerifBold18pt7b); // Use custom font and
  canvas.setTextWrap(false);            // clip text to canvas
}

void loop(void) {
  canvas.fillScreen(0);    // Clear canvas (not display)
  canvas.setCursor(0, 24); // Pos. is BASE LINE when using fonts!
  canvas.print(millis());  // Print elapsed time in milliseconds
  // Copy canvas to screen at upper-left corner. As written here,
  // assumes a color LCD, hence the color values of 0xFFFF (white)
  // for foreground, 0x0000 (black) for background. Mono OLED can
  // use 1 and 0. BOTH colors must be specified to overwrite the
  // prior screen contents there.
  display.drawBitmap(0, 0, canvas.getBuffer(),
    canvas.width(), canvas.height(), 0xFFFF, 0x0000);
}

Once more, using a 16-bit canvas instead. This example doesn’t make good use of
color in the canvas—it’s still just white text on a black background—and is mostly just
to show how the drawing syntax is a little different.

// Fancy (offscreen color canvas) flicker-free example for PyPortal

#include <Adafruit_GFX.h>
#include <Adafruit_ILI9341.h>
#include <Fonts/FreeSerifBold18pt7b.h>

#define TFT_D0        34 // Data bit 0 pin (MUST be on PORT byte boundary)
#define TFT_WR        26 // Write-strobe pin (CCL-inverted timer output)
#define TFT_DC        10 // Data/command pin
#define TFT_CS        11 // Chip-select pin
#define TFT_RST       24 // Reset pin
#define TFT_RD         9 // Read-strobe pin
#define TFT_BACKLIGHT 25

// ILI9341 screen with 8-bit parallel interface:
Adafruit_ILI9341 display(tft8bitbus, TFT_D0, TFT_WR, TFT_DC, TFT_CS, TFT_RST, 
TFT_RD);

©Adafruit Industries Page 37 of 38



GFXcanvas16 canvas(120, 30); // 16-bit, 120x30 pixels

void setup() {
  pinMode(TFT_BACKLIGHT, OUTPUT);       // PyPortal requires
  digitalWrite(TFT_BACKLIGHT, HIGH);    // turning on backlight

  display.begin();                      // Initialize and
  display.fillScreen(0x0000);           // clear display

  canvas.setFont(&FreeSerifBold18pt7b); // Use custom font
  canvas.setTextWrap(false);            // Clip text within canvas
}

void loop(void) {
  canvas.fillScreen(0x0000); // Clear canvas (not display)
  canvas.setCursor(0, 24);   // Pos. is BASE LINE when using fonts!
  canvas.print(millis());    // Print elapsed time in milliseconds
  // Copy canvas to screen at upper-left corner.
  display.drawRGBBitmap(0, 0, canvas.getBuffer(), canvas.width(), canvas.height());
}
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