#include #include #include #include #include "DHT.h" #include "RTClib.h" //file system #include "FS.h" #include "SD.h" #include "SPI.h" #define Version "0.33" #define WIRE Wire #define DHTTYPE DHT22 #define DHTPIN 4 #define SD_CS 5 #define BTN_UP 33 #define BTN_ENTER 34 #define BTN_DOWN 35 #define VOLT_IN 36 const float voltageDividerFactor = 1.51;//1.56; const float adcMaxVoltage = 3.3; const int adcResolution = 4095; Adafruit_SSD1306 display = Adafruit_SSD1306(128, 32, &WIRE); DHT dht(DHTPIN, DHTTYPE); RTC_DS3231 rtc; // Obiekt dla DS3231 int menuL0 = 10; int menuL1 = 10; int menuL2 = 10; float hum; float temp; float heat_idx; int secs; int mins; int hourss; int dayss; int months; int years; int minsToSet = -1; int hoursToSet = -1; int adcVoltValue; float measuredVoltage = 0; float batteryVoltage = 0; float quickBatteryVoltage = 0; float quickBatteryVoltage2 = 0; float quickBatteryVoltage3 = 0; float quickBatteryVoltage4 = 0; float currentBatteryVoltage = 0; float lastBatteryVoltage = 0; int battLifeMins = 998; int estHours = 0; int estMins = 0; int batteryPercent = 0; int batteryBarWidth = 0; char dateString[21]; std::string chrgState; unsigned long previousMillis = 0; const unsigned long interval = 1000; unsigned long currentMillis = millis(); String formatNumber(float number, int decimalPlaces = 1 ) { String str = String(number, decimalPlaces); str.replace('.', ','); return str; } String leadZero(float number) { String str = String(int(number)); str.trim(); if (number < 10) { str = "0" + str; } return str; } float voltageToPercentage(float voltage) { // Reprezentatywne punkty (wolt, procent) const int nPoints = 9; // Napięcia – uporządkowane malejąco float vPoints[nPoints] = {4.06, 4.00, 3.95, 3.90, 3.85, 3.80, 3.70, 3.45, 2.75}; // Odpowiednie poziomy naładowania float pPoints[nPoints] = {100, 95, 90, 80, 70, 60, 50, 10, 0}; if (voltage >= vPoints[0]) return pPoints[0]; if (voltage <= vPoints[nPoints - 1]) return pPoints[nPoints - 1]; for (int i = 0; i < nPoints - 1; i++) { if (voltage <= vPoints[i] && voltage > vPoints[i + 1]) { // Obliczamy współczynnik interpolacji float fraction = (voltage - vPoints[i + 1]) / (vPoints[i] - vPoints[i + 1]); // Interpolacja liniowa między punktami return pPoints[i + 1] + fraction * (pPoints[i] - pPoints[i + 1]); } } return 0; // Domyślnie – choć powinno się tu już nie dojść } // Funkcja liniowej interpolacji float interpolate(float x, float x0, float x1, float y0, float y1) { return y0 + (x - x0) * (y1 - y0) / (x1 - x0); } // Funkcja przeliczająca napięcie (w V) na procent naładowania baterii w trakcie ładowania float chargeVoltageToPercentage(float voltage) { // Przykładowe punkty (napięcie w V rosnąco) // Dopasuj je do własnych obserwacji / charakterystyki baterii const int nPoints = 10; float vPoints[nPoints] = { 4.03, // ~0% 4.06, // ~1% 4.12, // ~5% 4.14, // ~10% 4.16, // ~30% 4.18, // ~60% 4.19, // ~80% 4.20, // ~95% 4.21, // ~98% 4.22 // 100% }; float pPoints[nPoints] = { 0, // 4.03 V 1, // 4.06 V 5, // 4.12 V 10, // 4.14 V 30, // 4.16 V 60, // 4.18 V 80, // 4.19 V 95, // 4.20 V 98, // 4.21 V 100 // 4.22 V }; // 1. Jeśli napięcie jest poniżej najniższego punktu, zwróć minimalny procent if (voltage <= vPoints[0]) { return pPoints[0]; } // 2. Jeśli napięcie przekracza najwyższy punkt, zwróć maksymalny procent if (voltage >= vPoints[nPoints - 1]) { return pPoints[nPoints - 1]; } // 3. Znajdź przedział, w którym mieści się zmierzone napięcie for (int i = 0; i < nPoints - 1; i++) { if (voltage >= vPoints[i] && voltage < vPoints[i + 1]) { // Interpolacja liniowa między sąsiednimi punktami return interpolate(voltage, vPoints[i], vPoints[i + 1], pPoints[i], pPoints[i + 1]); } } // Nie powinniśmy tu trafić, ale na wszelki wypadek: return 0.0; } void setup() { Serial.begin(115200); Wire.begin(21, 22); analogSetAttenuation(ADC_11db); if (!rtc.begin()) { Serial.println("Nie znaleziono DS3231 RTC!"); while (1); // Zatrzymaj program, jeśli RTC nie jest dostępny } display.begin(SSD1306_SWITCHCAPVCC, 0x3C); // Address 0x3C for 128x32 display.setTextSize(1); display.setTextColor(SSD1306_WHITE); display.clearDisplay(); display.println("Version:"); display.setCursor(0, 8); display.println(Version); display.setCursor(0, 16); display.println("DHT22"); display.setCursor(32, 16); display.println("RTC: DS3231"); display.setCursor(0, 24); display.println("Battery: "); display.setCursor(55, 24); display.println(int(floor(float(battLifeMins)/60))); display.setCursor(70, 24); display.println("h"); display.display(); delay(500); dht.begin(); pinMode(BTN_UP, INPUT_PULLDOWN ); pinMode(BTN_ENTER, INPUT_PULLDOWN ); pinMode(BTN_DOWN, INPUT_PULLDOWN ); rtc.now(); DateTime now = rtc.now(); years = now.year(); months = now.month(); dayss = now.day(); hourss = now.hour(); mins = now.minute(); secs = now.second(); display.clearDisplay(); display.setCursor(0,0); if (!SD.begin(SD_CS)) { display.println("Blad inicjaliz SD!"); display.display(); delay(1000); }else { Serial.println("Karta SD wykryta!"); } display.setCursor(0,16); if (SD.exists("/TempHumLog.txt")) { } else { File file = SD.open("/TempHumLog.txt", FILE_APPEND); file.println("Data; Godzina; Temp; Humi; Feel"); file.close(); } sprintf(dateString, "%02d/%02d/%4d %02d:%02d:%02d", now.day(), now.month(), now.year(), now.hour(), now.minute(), now.second()); if (SD.exists("/GeneralLog.txt")) { } else { File file = SD.open("/GeneralLog.txt", FILE_APPEND); file.print("Utworzono: "); file.print(dateString); file.print(" Wersja: "); file.println(Version); file.close(); } File file = SD.open("/GeneralLog.txt", FILE_APPEND); file.print("Uruchomienie: "); file.print(dateString); file.print(" Wersja: "); file.println(Version); file.close(); display.display(); delay(500); adcVoltValue = analogRead(VOLT_IN); // Odczyt wartości ADC z GPIO36 measuredVoltage = (adcVoltValue * adcMaxVoltage) / adcResolution; batteryVoltage = (measuredVoltage * voltageDividerFactor)+0.1; currentBatteryVoltage = batteryVoltage; quickBatteryVoltage = batteryVoltage; quickBatteryVoltage2 = batteryVoltage; quickBatteryVoltage3 = batteryVoltage; quickBatteryVoltage4 = batteryVoltage; //setup END //###################### } void loop() { currentMillis = millis(); display.clearDisplay(); ////DIAGNOSTIC menu nr diag // display.setCursor(75, 16); // display.println(menuL0); // display.setCursor(90, 16); // display.println(menuL1); // display.setCursor(105, 16); // display.println(menuL2); hum = dht.readHumidity(); temp = dht.readTemperature(); // Compute heat index in Celsius (isFahreheit = false) heat_idx = dht.computeHeatIndex(temp, hum, false); //DATE DateTime now = rtc.now(); years = now.year(); months = now.month(); dayss = now.day(); hourss = now.hour(); mins = now.minute(); secs = now.second(); sprintf(dateString, "%02d/%02d/%4d %02d:%02d:%02d", now.day(), now.month(), now.year(), now.hour(), now.minute(), now.second()); if (menuL0 == 10 ) { // ############# MENU TEMP display.setCursor(0, 0); display.println(dateString); //HUM&TEMP //######################################### display.setCursor(0, 8); display.println("Wilgotnosc:"); display.setCursor(85, 8); display.println(hum); display.setCursor(120, 8); display.println("%"); display.setCursor(0, 16); display.println("Temperatura:"); display.setCursor(85, 16); display.println(temp); display.setCursor(120,16); display.println("C"); display.setCursor(0, 24); display.println("Odczuwalna:"); display.setCursor(85, 24); display.println(heat_idx); display.setCursor(120,24); display.println("C"); } //dla indexu: Caution: > 27*C // Extreme Caution: > 32 *C // Danger: > 40 *C // Extreme Danger: > 52 *C //######################################### if (menuL0 == 9 ) { if (digitalRead(BTN_ENTER) == HIGH and menuL1 == 10) { menuL1 = 9; } display.setCursor(0, 0); sprintf(dateString, "%02d/%02d/%4d %02d:%02d:%02d", now.day(), now.month(), now.year(), now.hour(), now.minute(), now.second()); display.println(dateString); if (menuL1 == 10) { display.setCursor(0, 8); display.print("Enter edycja czasu"); } if (menuL1 == 9) { display.setCursor(0, 8); delay(100); display.print("Ustaw godziny"); delay(150); if (digitalRead(BTN_ENTER) == HIGH and menuL2 == 10) { menuL2 = 9; } if (menuL2 == 9){ display.setCursor(0,16); display.print("Godzina:"); display.setCursor(45,16); if (hoursToSet == -1){ hoursToSet = now.hour(); } display.print(hoursToSet); delay(100); if (digitalRead(BTN_ENTER) == HIGH) { // tu ustawianie czasu menuL2 = 10; rtc.adjust(DateTime(now.year(), now.month(), now.day(), hoursToSet, now.minute(), now.second())); hoursToSet = -1; } } } if (menuL1 == 8) { display.setCursor(0, 8); display.print("Ustaw minuty"); if (digitalRead(BTN_ENTER) == HIGH and menuL2 == 10) { menuL2 = 9; } if (menuL2 == 9){ display.setCursor(0,16); display.print("Minuta:"); display.setCursor(45,16); if (minsToSet == -1){ minsToSet = now.minute(); } display.print(minsToSet); delay(250); if (digitalRead(BTN_ENTER) == HIGH) { // tu ustawianie czasu menuL2 = 10; rtc.adjust(DateTime(now.year(), now.month(), now.day(), now.hour(), minsToSet, now.second())); minsToSet = -1; } } if (menuL2 == 6){ display.setCursor(0,24); display.print("Wyjdz"); if (digitalRead(BTN_ENTER) == HIGH) { menuL2 = 10; } } } if (menuL1 == 7 ) { display.setCursor(0, 8); display.print("Ustaw sekundy na 0"); if (digitalRead(BTN_ENTER) == HIGH and menuL2 == 10) { menuL2 = 9; } if (menuL2 == 9){ display.setCursor(0,16); display.print("Sekundy = 0"); delay(250); if (digitalRead(BTN_ENTER) == HIGH) { menuL2 = 10; rtc.adjust(DateTime(now.year(), now.month(), now.day(), now.hour(), now.minute(),0)); minsToSet = -1; } } } if (menuL1 == 6) { display.setCursor(0, 8); display.print("Wyjdz"); if (digitalRead(BTN_ENTER) == HIGH) { menuL1 = 10; } } } if (menuL0 == 8 ) { display.setCursor(0, 0); display.println(dateString); display.setCursor(0, 8); display.print("Battery"); display.setCursor(50, 8); display.print(batteryPercent); display.setCursor(70, 8); display.print("%"); display.setCursor(80,8); display.print("V:"); display.setCursor(95, 8); display.print(formatNumber(batteryVoltage,2)); display.setCursor(0, 24); if (currentBatteryVoltage >= 4.20 ){ display.print("Full"); chrgState = "FUL"; } else if ((lastBatteryVoltage < currentBatteryVoltage && currentBatteryVoltage >= 2.0&& currentBatteryVoltage >= 4.0 ) || currentBatteryVoltage >= 4.10 ){ display.print("Charging"); chrgState = "CHR"; } else if (lastBatteryVoltage > currentBatteryVoltage && currentBatteryVoltage >= 2.0 ) { display.print("Discharge"); chrgState = "DSG"; } else { display.print("---"); chrgState = "---"; } if (chrgState == "DSG"){ batteryPercent = voltageToPercentage(currentBatteryVoltage); } else if (chrgState == "CHR") { batteryPercent = chargeVoltageToPercentage(currentBatteryVoltage); } else { batteryPercent = 100; } display.setCursor(60, 24); display.print("Est:"); estHours = int(floor( ((float(batteryPercent)/100) * battLifeMins) /60) ); display.setCursor(85, 24); display.print(leadZero(estHours)); display.setCursor(99, 24); display.print("h"); estMins = ((float(batteryPercent)/100) * battLifeMins) - (estHours * 60); display.setCursor(107, 24); display.print(leadZero(estMins)); display.setCursor(120, 24); display.print("m"); display.drawRect(0,16, 124, 6, SSD1306_WHITE); display.fillRect(124, 17, 5, 4, SSD1306_WHITE); batteryBarWidth = int(((float(batteryPercent)/100)*122)); if (batteryBarWidth >122){ batteryBarWidth = 122; } display.fillRect(1, 17, batteryBarWidth, 5, SSD1306_WHITE); if (batteryVoltage < 2 ){ display.setCursor(60,8); display.print("xxx"); } if (digitalRead(BTN_UP) == HIGH) { display.setCursor(0, 24); display.print("UP"); } if (digitalRead(BTN_ENTER) == HIGH) { display.setCursor(30, 24); display.print("ENTER"); } if (digitalRead(BTN_DOWN) == HIGH) { display.setCursor(60, 24); display.print("DOWN"); } } if (digitalRead(BTN_UP) == HIGH and menuL0 <10 ) { if ( menuL0 < 10 && menuL1 == 10 ) { menuL0 = menuL0 + 1; } if (menuL1 < 9 && menuL2 == 10) { menuL1 = menuL1 + 1; } if (menuL2 < 9 and menuL0 != 10 and menuL1 != 10) { menuL2 = menuL2 + 1; } if (menuL2 == 9 and minsToSet <59) { minsToSet = minsToSet + 1; } if (menuL2 == 9 and hoursToSet < 23) { hoursToSet = hoursToSet + 1; } } if (digitalRead(BTN_DOWN) == HIGH and menuL0 >= 8) { if (menuL0 > 8 && menuL1 == 10 ) { menuL0 = menuL0 - 1; } if (menuL1 > 6 and menuL1 <= 9 && menuL2 == 10) { menuL1 = menuL1 - 1; } if (menuL2 > 6 and menuL2 < 9 and menuL0 != 10 and menuL1 != 10 ) { menuL2 = menuL2 - 1; } if (menuL2 == 9 and minsToSet > 1) { minsToSet = minsToSet - 1; } if (menuL2 == 9 and hoursToSet > 1) { hoursToSet = hoursToSet - 1; } } if (currentMillis - previousMillis >= interval) { previousMillis = currentMillis; adcVoltValue = analogRead(VOLT_IN); // Odczyt wartości ADC z GPIO36 measuredVoltage = (adcVoltValue * adcMaxVoltage) / adcResolution; quickBatteryVoltage4 = quickBatteryVoltage3; quickBatteryVoltage3 = quickBatteryVoltage2; quickBatteryVoltage2 = quickBatteryVoltage; quickBatteryVoltage = (measuredVoltage * voltageDividerFactor)+0.1; batteryVoltage = (quickBatteryVoltage + quickBatteryVoltage2 + quickBatteryVoltage3 + quickBatteryVoltage4)/4; } // Log napiećia docelowoe procent baterii // kiedy zaden przycisk nie jest wcisniety if (abs (batteryVoltage - currentBatteryVoltage) >= 0.14 && digitalRead(BTN_DOWN) == LOW && digitalRead(BTN_UP) == LOW && digitalRead(BTN_ENTER) == LOW ) { lastBatteryVoltage = currentBatteryVoltage; currentBatteryVoltage = batteryVoltage; } if (secs % 15 == 0) { lastBatteryVoltage = currentBatteryVoltage; currentBatteryVoltage = batteryVoltage; delay(500); } if (mins % 1 == 0 && secs == 0) { File file = SD.open("/GeneralLog.txt", FILE_APPEND); if (file) { display.fillRect(0, 0, 124, 64, SSD1306_WHITE); file.print(dateString); file.print(" Battery %: "); file.print(batteryPercent); file.print(" V: "); file.println(currentBatteryVoltage); file.close(); } } //zapis na SD: if (mins % 1 == 0 && secs == 0) { File file = SD.open("/TempHumLog.txt", FILE_APPEND); if (file) { display.fillRect(0, 0, 124, 64, SSD1306_WHITE); file.print(leadZero(dayss)); file.print("/"); file.print(leadZero(months)); file.print("/"); file.print(years); file.print("; "); file.print(hourss); file.print(":"); file.print(leadZero(mins)); file.print("; "); file.print(formatNumber(temp)); file.print("; "); file.print(formatNumber(hum)); file.print("; "); file.println(formatNumber(heat_idx)); file.close(); delay(1000); } } display.display(); delay(150); yield(); } //Main feature: // RTC z możliwością ustawienia godziny // odczyt wilgotności, temperatury i temperatury odcuwalnej // zasilanie bateryjne wraz z obsługą poziomu baterii i estymowanym czasem pracy na baterii // menu //2DO zapis na karcie SD